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Abstract

Significant vulnerabilities have been identified in collaborative recommender systems. The
open nature of collaborative filtering allows attackers to inject biased profile data and force the
system to “adapt” in a manner advantageous to them. In this paper, we examine models for
building profile injection attacks and the robustness of various recommendation algorithms
in the face of such attacks. Evaluation of attack models considers the overall impact on
recommendation and the degree of knowledge required to mount a realistic and successful
attack. Our study shows that user-based recommender systems are highly vulnerable to attack.
Although item-based algorithms provide a certain amount of insulation from many attack
models, the segment attack is quite effective. We introduce a model-based algorithm based
on probabilistic latent semantic analysis that offers significant improvements in stability and
robustness against all identified attack profiles. In addition, we introduce a detection model
that marginalizes the impact of profile injection attacks.

1 Introduction

Recent research has begun to examine the vulnerability of collaborative filtering recom-
mender systems to “shilling” attacks [1, 2, 3, 4]. The more descriptive phrase “profile injec-
tion attacks” is also used, and better conveys the tactics of an attacker. In a profile injection
attack, an attacker interacts with a collaborative recommender system to build a number
of profiles associated with fictitious identities. The aim is to bias the system’s output in
the attacker’s favor. User-adaptive systems, such as collaborative filtering, are vulnerable to
such attacks precisely because they rely on user interaction to generate recommendations.

It is easy to see why collaborative filtering is susceptible to profile injection attacks. A user-
based collaborative filtering algorithm collects profiles representing each user’s preferences.
A recommendation is produced for an active user by combining the preferences of peers with
similar profiles. Biased data in the profile database may be mistaken for genuine users and
compromise the accuracy of recommendations. This is precisely the outcome found in [3]
and [4].

Lam et al. [3] show that item-based collaborative filtering offers an advantage over the
user-based approach. In item-based collaborative filtering, a recommendation consists of
items that have similar rating profiles to items the active user has already rated highly. By
adding biased user profiles, an attacker only alters a portion of the rating profile for any given
item. In [1], we introduce an attack that specifically targets item-based recommendation.
The segment attack targets individual segments of users that are predisposed to specific,



predictable items.
A model-based approach to collaborative filtering provides improved robustness against

all profile injection attacks, including the segment attack. A model of the dataset is an
abstraction of the detailed user profiles. Thus, the influence of an attack is minimized because
attack profiles are not directly used in recommendation. We have focused on probabilistic
latent semantic analysis (PLSA) to infer hidden relationships among groups of users. Each
cluster of similar users represents an aggregate profile that is used for recommendation,
rather than the original user data. PLSA is a “fuzzy” approach, in that each user has a
degree of association with every user cluster. This allows particularly authoritative users to
exercise greater influence on recommendation.

In addition to choosing a robust recommendation algorithm, a system can insulate it-
self from attack through detection and response of the most effective attack models. Our
approach is supervised classification of attack profiles and genuine user profiles. To evade
detection, attackers must generate profiles that are more realistic and contain less bias.
The profiles are less effective at influencing recommendation behavior, and more profiles are
needed for effect. However, large attacks are conspicuous. In this way, we hope to render
profile injection attacks relatively harmless.

This paper is organized as follows. In Section 2 we provide a description of various attack
models against collaborative filtering systems. Section 3 includes details of the user-based,
item-based, and model-based recommendation algorithms applied in our experiments. Sec-
tion 4 contains a description of the evaluation metrics employed to determine the effectiveness
of various attack models. In Section 5 we present our experimental results. We show the
impact of attack models on the common user-based and item-based algorithms. We then
compare these results to the model-based PLSA. In Section 6 we introduce attributes for
detecting profile injection attacks.

2 Profile Injection Attacks

A profile injection attack against a collaborative recommender system consists of a number
of attack profiles added to the database of real user profiles. The goal of a push attack is to
increase the system’s predicted rating on a target item for a given user (or group of users).
An attack model is an approach to constructing attack profiles, based on knowledge about
the recommender system, its rating database, its products, and/or its users.

2.1 An Example

Consider, as an example, a recommender system that identifies books that users might like
to read using a user-based collaborative algorithm [5]. In general, an user builds up a profile
(in the scale of 1-5 with 1 being the lowest) on various books abd returns to the system for
new recommendations. Figure 1 shows Alice’s profile along with that of seven genuine users.
An attacker, Eve, has inserted attack profiles (Attack1-3) into the system, all of which give
high ratings to her book labeled Item6. Eve’s attack profiles may closely match the profiles
of one or more of the existing users based on the ratings given across the attack profiles.

Without the attack profiles, a standard user-based collaborative filtering system, which
uses correlation-based similarity, will find User6 as the most similar to Alice and the predicted
ratings for Alice on Item6 will be 2, essentially stating that Item6 is likely to be disliked



Item1 Item2 Item3 Item4 Item5 Item6

Correlation

with Alice

Alice 5 2 3 3 ?

User1 2 4 4 1 -1.00

User2 3 1 3 1 2 0.76

User3 4 2 3 1 1 0.72

User4 3 3 2 1 3 1 0.21

User5 3 1 2 -1.00

User6 4 3 3 3 2 0.94

User7 5 1 5 1 -1.00

Attack1 5 3 2 5 1.00

Attack2 5 1 4 2 5 0.89

Attack3 5 2 2 2 5 0.93

Figure 1: An example of a push attack favoring the target item Item6.

by Alice. After the attack, however, the Attack1 profile is the most similar one to Alice,
and would yield a predicted rating of 5 for Item6, the opposite of what would have been
predicted without the attack. In this example, the attack is successful, and Alice will get
Item6 as a recommendation, regardless of whether this is really the best suggestion for her.
She may find the suggestion inappropriate, or worse, she may take the system’s advice, buy
the book, and then be disappointed by the delivered product.

2.2 Attack Models

The generic form of an attack profile is depicted in Figure 2. Specific attack models define
the method for assigning ratings to the set of filler items and the target item. The set of
filler items represent a group of randomly selected items in the database that are assigned
ratings within the attack profile. In certain attack models, a subset of filler items may be
pre-selected for a precise impact. The target item in a push attack is generally given the
maximum allowed rating. Prior work on recommender system stability has focused on the
random and average attack models. In addition, we have introduced the segment attack.

The random attack and average attack are basic attack models introduced in [3] and further
generalized in [2]. In both cases, filler items of an attack profile are assigned random ratings.
For a random attack, the ratings are distributed around the global rating mean. For an
average attack, the ratings are distributed around the individual mean for each filler item.

In practice, an average attack is much more effective than a random attack. However, it
requires greater knowledge about the system’s rating distribution. This knowledge cost is
minimized by the fact that an average attack can be quite successful with a small filler item
set, whereas a random attack usually must have a rating for every item in the database in
order to be effective.

An extension of the random attack, the bandwagon attack [1, 2] is nearly as effective as the
average attack. The goal of a bandwagon attack is to associate the target item with a small
number of frequently rated items. This takes advantage of the Zipf ’s law distribution: a
small number of items will receive the lions share of ratings. In a bandwagon attack, a small
set of frequently rated items are selected along with the set of random filler items. Attack
profiles give maximum rating to those items that have high visibility, and therefore have a
good probability of being similar to a large number of users.

Random, average, and bandwagon attack models are not particularly effective against
item-based collaborative filtering. In response, the segment attack was introduced in [1] and



Figure 2: The general form of a push attack profile.

further examined in [2, 6, 7]. It turns out that a segment attack is also quite effective against
user-based algorithms. A segment attack attempts to target a specific group of users who
may already be predisposed toward the target item. For example, an attacker that wishes
to push a fantasy book might want the product recommended to users expressing interest in
Harry Potter and Lord of the Rings.

A typical segment attack profile consists of a number of selected items that are likely to
be favored by the targeted user segment, in addition to the random filler items. This differs
from a bandwagon attack in that the selected items are expected to be highly rated within
the targeted user segment, rather than frequently rated. The selected segment items are
assigned the maximum rating value along with the target item. To provide the greatest
impact on item-based algorithms, all remaining filler items are given the minimum allowed
rating.

3 Recommendation Algorithms

We have concentrated in this work on the most commonly-used algorithms for collaborative
filtering. Each algorithm assumes that there is a user / item pair for whom a prediction is
sought, the target user and the target item. The task for the algorithm is to predict the
target user’s rating for the target item.

3.1 User-Based Collaborative Filtering

The standard kNN collaborative filtering algorithm is based on user-to-user similarity [5].
In selecting neighbors, we have used Pearson’s correlation coefficient for user-user similarities
and a neighborhood size k = 20. We also filter out all neighbors with a similarity of less
than 0.1 to prevent predictions being based on very distant or negative correlations. Once
the most similar users are identified, predictions are calculated as described in [7].

3.2 Item-Based Collaborative Filtering

Item-based collaborative filtering works by comparing items based on their pattern of
ratings across users. Again, a nearest-neighbor approach can be used. For our purpose
we have adopted the item-item similarity is calculated using the adjusted cosine similarity
measure introduced by [8]. Once again, we consider a neighborhood of size k = 20 and
ignore items with negative similarity. Once the most similar items are identified, predictions
are calculated as described in [7].
In addition to these common collaborative filtering methods, we have also examined some



additional model-based approaches as a means of increasing robustness to attack.

3.3 Model-Based Collaborative Filtering

A standard model-based collaborative filtering algorithm uses k-means to cluster similar
users. Given a set of user profiles, the space can be partitioned into k groups of users that
are close to each other based on a measure of similarity. The discovered user clusters are
then applied to the user-based neighborhood formation task, rather than individual profiles.

A more successful approach based on probabilistic latent semantic analysis (PLSA) mod-
els [9] provides a probabilistic method for characterizing latent or hidden semantic associ-
ations among co-occurring objects. In [10, 11] PLSA was applied to the creation of user
clusters based on web usage data. We have adapted this approach to the context of collab-
orative filtering.

Given a set of n users, U = {u1, u2, · · · , un}, and a set of m items, I = {i1, i2, · · · , im} the
PLSA model associates an unobserved factor variable Z = {z1, z2, · · · , zl} with observations
in the rating data. For a target user u and a target item i, the following joint probability
can be defined:

P (u, i) =
l∑

k=1

Pr(zk) • Pr(u|zk) • Pr(i|zk)

In order to explain a set of ratings (U, I), we need to estimate the parameters Pr(zk),
Pr(u|zk), and Pr(i|zk), while maximizing the following likelihood L(U, I) of the rating data:

L(U, I) =
∑

u∈U

∑

i∈I

ru,i • log Pr(u, i)

where ru,i is the rating of user u for item i.
We can now identify segments of users that have similar underlying interests. For each

latent variable zk, we create a user cluster Ck and select all users having probability Pr(u|zk)
exceeding a certain threshold µ. If a user does not exceed the threshold for any latent variable,
it is associated with the user segment of highest probability. Thus, every user profile will be
associated with at least one user segment, but may be associated with multiple segments.
This allows authoritative users to have broader influence over predictions, without adversely
affecting coverage in sparse rating data.

4 Evaluation Metrics

There has been considerable research in the area of recommender systems evaluation [12].
Some of these concepts can also be applied to the evaluation of the security of recommender
systems, but in evaluating security, we are interested not in raw performance, but rather in
the change in performance induced by an attack. Our goal is to measure the effectiveness
of an attack - the “win” for the attacker. The desired outcome for the attacker in a “push”
attack is of course that the pushed item be more likely to be recommended after the attack
than before. In the experiments reported below, we follow the lead of [4] in measuring
an algorithms stability via prediction shift. The prediction shift metric as computed in [2]
measures the change in the predicted rating of an item before and after attack. We have also



confirmed our results using other metrics such as hit ratio, the average likelihood that a top
N recommender will recommend the pushed item, but for brevity have limited the results
to just prediction shift [8, 7].

5 Experimental Results of Attack Models

In our experiments we have used the publicly-available Movie-Lens 100K dataset1. This
dataset consists of 100,000 ratings on 1682 movies by 943 users. All ratings are integer values
between one and five where one is the lowest (disliked) and five is the highest (most liked).
Our data includes all the users who have rated at least 20 movies.

In all experiments, we used a neighborhood size of 20 in the k-nearest-neighbor algorithms
for user-based and item-based systems. To ensure the generality of the results, 50 movies
were selected randomly that represented a wide range of average ratings and number of
ratings. Each of these movies was attacked individually and the average is reported for all
experiments. We also generally selected a sample of 50 users as our test data, mirroring the
overall distribution of users in terms of number of movies seen and ratings provided. The
results reported below represent averages over the combinations of test users and test movies.
We use the metric prediction shift, as described earlier, to measure the relative performance
of various attack models.

Another aspect of attack profiles that impact their effectiveness is filler size or the percent-
age of items in the profile that are given ratings. For all the attack models we have studied,
the effectiveness of the attack varies as a function of the filler size. For brevity we have not
included these results, but have selected the filler size for each attack model/recommendation
algorithm pair that produces the largest prediction shift. For all the attacks, we generated
a number of attack profiles and inserted them into the system database and then gener-
ated predictions. We measure “size of attack” as a percentage of the pre-attack user count.
There are approximately 1000 users in the database, so an attack size of 1% corresponds to
10 attack profiles added to the system.

5.1 Vulnerability of Popular Collaborative Filtering Algorithms

Figure 3(a) shows the results of a comparative experiment examining three attacks against
the two most popular collaborative recommendation algorithms at a 1% attack. Recall that
the rating scale in this domain is 1-5 with an average of 3.6, so a rating shift of 1.4 is enough
to lift an average-rated movie to the top of the scale. As the figure shows, the additional
system knowledge required for average attack results in a significant increase in prediction
shift over random attack. The item-based algorithm on the other hand appears more robust
than the user-based algorithm without significant knowledge requirements. This observation
led us to develop the segment attack intended specifically to manipulate the item similarity
used by the item-based algorithm while still requiring limited knowledge.

To build our segmented attack profiles, we identified the segment of users as all users who
had given above average scores(4 or 5) to any three of the five horror movies, namely, Alien,
Psycho, The Shining, Jaws, and The Birds.2 For this set of five movies, we then selected all

1http://www.cs.umn.edu/research/GroupLens/data/
2The list was generated from on-line sources of the popular horror films:
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Figure 3: Prediction shift comparisons

combinations of three movies that had at least 50 users support, and chose 50 of those users
randomly and averaged the results.

From Figure 3(a) we see if we evaluate the segmented attack based on its average impact on
all users, there is nothing remarkable. However the “in-segment” users, those users who have
rated the segment movies highly and presumably are desirable customers for the attacker
are impacted significantly for both the user-based and item-based algorithms. Although
item-based is still less affected than user- based, a .6 prediction shift for a 1% attack is still
a significant bias.

5.2 PLSA Comparison

Based on these results, additional model based collaborative recommendation techniques
were examined in an effort to identify a prediction scheme that would provide further robust-
ness to these types of attacks. From this exploration, we discovered PLSA recommendation
had significant robustness without compromising the quality of the predictions. For the
PLSA experiments, we employ a user segment size of 30 which was chosen for its pre-attack
prediction accuracy. Although a larger segment size did result in improved MAE, 30 seems
to be the point of diminishing returns for our dataset. Larger segment sizes require much
greater processing time in order to build a model, with marginal improvement for our pur-
poses. For PLSA, optimal results were obtained using k = 10 for the neighborhood size with
neighbors with a similarity score less than 0.1 filtered out.

Figure 3(b) depicts the “in-segment” prediction shift for the Horror segment attack across
various attack sizes. Clearly, the attack is extremely effective against the k-NN algorithm as
noted previously. By contrast, both item-based and PLSA are less affected by the segment
attack, but the strength of the PLSA algorithm is shown in its additional robustness at small
attack sizes. The PLSA algorithm has the additional benefit of stabilizing the prediction shift
for attack sizes beyond 5%, while the item-based algorithm continues to grow logarithmically.

http://www.imdb.com/chart/horror and http://www.filmsite.org/afi100thrillers1.html.



6 Attack Profile Classification

In this section, we present our approach to attack detection and response based on pro-
file classification. Prior work in detecting attacks in collaborative filtering systems have
mainly focused on ad hoc algorithms for identifying basic attack models such as the random
attack [13]. In contrast, we propose an alternate technique based on more traditional super-
vised learning. We show that a C4.5 classifier, using the proposed classification attributes,
and built on a training set created through injecting system data with segment attack profiles,
can be applied to unseen segment attack data with impressive results. For this approach,
a user’s profile is examined and based on characteristics of the profile, the entry is given
a classification as either authentic or attack and would subsequently be eliminated from
consideration in collaborative filtering.

6.1 Attributes for Detection

The hypothesis behind using generic attributes is based on the expectation that the overall
signature of attack profiles differs from authentic profiles. This difference comes from two
sources: the rating given the target item, and the distribution of ratings among the filler
items. As many researchers in the area have theorized [3, 13, 4, 7], it is unlikely if not
unrealistic for an attacker to have complete knowledge of the ratings in a real system. As
a result generated profiles often deviate from rating patterns seen for authentic users. As a
result, an attribute that captures these anomalies is likely to be informative in identifying
reduced knowledge attack profiles.

Prior work by Chirita et al. [13] Rating Deviation from Mean Agreement (RDMA) intended
to capture average deviation from the item average for each user. Instead, we propose using
a variation of the RDMA measure which we call Weighted Degree of Agreement (WDA) that
uses only the numerator of the RDMA equation and is computed in the following way:

WDAu =
Nu∑

i=0

|ru,i − Avgi|
NRi

where Nu are the items rated by user u, ru,i is the rating given item i in user u’s profile,
and NRi is the number of overall ratings given to item i. This captures the sum of the
differences of the profile’s ratings from the item’s average rating divided by the item’s rating
frequency. The overall average WDA is then subtracted from the profile’s value, WDAu, as
a normalizing factor.

Our second attribute is designed based on the structure of the segment attack model.
As shown in Section 2, segment attacks can be described based on the characteristics of
their partitions of target item, selected items, and filler items. If these partitions can be
recognized, the statistical features of the ratings that make up these partitions can then
be used as detection attributes. Our detection model discovers partitions of each profile
that maximizes its similarity to the attack model. To model this partitioning for segment
attack, each profile is split into two sets. The first set contains all ratings that equal the
user’s maximum rating, the second set is made up of all other ratings by that users. Thus
the intention is to approximate the partition between the union of the target and segment
sets from the filler set. We can then use statistical features of the partitions as detection



attributes. Thus we introduce the Filler Mean Target Difference (FMTD) attribute. The
attribute is calculated as follows:

FMTDu =

∣∣∣∣∣∣∣




∑
i∈Ptarget

ru,i

|Ptarget|


−




∑
k∈Pfiller

ru,k

|Pfiller|




∣∣∣∣∣∣∣

where ru,i is the rating given by user u to item i. The overall average FMTD is then
subtracted from FMTDu as a normalizing factor.

6.2 Experimental Results of Detection

For our detection experiments, we used the same Movie-Lens 100K dataset used in Sec-
tion 5. To minimize over-training, the dataset was split into 2 partitions. The first partition
was made a training set, while the second was used for testing and was unseen during train-
ing. The training data was created by inserting a number of segment attacks at various filler
sizes that ranged from 3% to 100%. Once again to minimize over-training, a completely
separate segment was used for training and testing. The C4.5 algorithm was then used to
build a binary profile classifier that output either authentic or attack. Table 1 depicts the
average confusion matrix for our detection algorithm averaged over filler sizes of 3%, 5%,
10%, 20%, 40%, 60%, 80%, and 100% for a segment attack of size 1%. As is apparent from

Segment Model Detection

Authentic Attack
942.3 0.7 Authentic
0.0 9.0 Attack

Table 1: Confusion matrices for 1% Horror segment attack averaged across filler sizes

the confusion matrix, the detection capabilities of the proposed attributes for increasing
the robustness of collaborative filtering against segment push attacks is significant. Its also
important to note, few authentic users were misclassified as attacks which if excluded from
collaborative filtering could otherwise reduce the accuracy of the system’s predictions.

7 Conclusions

The open and interactive nature of collaborative filtering is both a source of strength and
vulnerability for recommender systems. Biased profile data can easily sway the recommen-
dations of a collaborative system towards inaccurate results that serve the attacker’s ends.
Previous research hypothesized that item-based collaborative filtering is relatively robust
compared to the user-based algorithm. However, our research shows that a low-cost tech-
nique, the segmented attack, can be successfully deployed against item-based recommenders.
We have introduced a more successful recommendation algorithm based on probabilistic la-
tent semantic analysis. PLSA can discover clusters of similar users that are compared to an
active user’s profile to generate a recommendation. In addition, we have demonstrated that
a classifier learning approach can accurately distinguish attack profiles from real users, and
can limit the damage caused by profile injection attacks.
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